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Abstract

The control of systems with unknown dynamics and unpredictable disturbances has raised some challenging
problems. ‘This is particularly important when high system peformance is to be guaranteed at all times. Recently,
the Time Delay Control has been suggested as an alternative control scheme. The proposed control system does
not require an explicit plant model nor does it depend on the estimation of specific plant parameters. Rather, it
combines adaptation with past observations to directly estimate the effect of the plant dynamics.

This paper formulates a control law for a class of dynamic systems and then presents a sufficient conditiorf for
control system stability. The derivation is based on the bounded input-hounded output stability approach using
Leo function norms. The control scheme is implemented on a five degrees-..i-freedom high speed and high precision
magnetic bearing. The control performance is evaluated using step respon~-s, frequency responses and disturbance
rejection properties. The experimental data show an excellent control perf-.rmance despite the system complexity.

1 Introduction

Some classical control methods deal with well known linear time-invariant systems. In many applications, however,
some relevant part of the system maybe unknown, time varying, or nonlinear. Controlled systems are thus often
limited to operating in only a small portion of their available range. For example, servo motors must operate in
the linear part of their range for accurate control. Restrictions such as these have led to the development of control
techniques that deal with such complexities.

Several types of modern control strategies have been developed to deal with nonlinear, time-variant systems. One
of the first methods to accommodate nonlinear systems was Model Reference Control. This technique employs a
model of the system and uses the difference between the model response and the plant response as the input signal to
the plant [[8]. The model is either a physical model or a simulated system on a computer. Although it has no variable
parameters, it is very useful for either specifying desired performance or for the observation of unaccessable states.
A drawback in this technique is that it requires knowledge of the full dynamic model and system linutitions. When
perfect cancellation of the system nonlinearities is not achieved due to imperfect modeling or inaccurite parameter
values, the dynamic performance of the plant may be degraded to the poiut of closed loop instability i22].

Another advanced technique is Adaptive Control. An adaptive system measures a certain index of performance
which is a function of the inputs, states and/or outputs of the system. From the comparison of the measured index of
performance with a set of given ones, the adaptation mechanism nodifies the parameters of the controlier or the set of
given ones [4,14,16,21]. There are several classes of adaptive control. A very common variation uses a desired reference
model as a basis for comparison and is termed Model Reference Adaptive Control (MRAC). In the direct MRAC, no
attempt is made to identify the plant parameters. Controller parameters are directly updated. In Self-Tuning control,
plant model parameters are identified/modified and the controller action is automatically updated according to a
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fixed regulator design. Another approach generates the control action in part by an adaptive feedforward controller
which “behaves” as the “inverse” of the plant [22]. Al adaptive controllers share the distinguishing feature of system
identification followed by variation of parameters to maintain desired performance. A drawback of adaptation is that
it is generally slow and computationally intense. Often the environment changes faster than the system, causing
performance degradation or even instability. Other references on adaptive control include [8,9,11,12,19,20,24].

Other control methods, such as Variable Structure Controllers, take totally different strategies to achieve stability
in nonlinear systems. This type of controller utilizes state feedback in a control law which switches the structure
of the closed loop system between trajectories which may themselves be unstable or marginally stable but when
combined by the control law in a switching technique, result in a system which is stable. A method of switching
called “sliding mode”, described in [23,26,27,37), arranges the switching so that ideally the system remains on one of
the switching lines (or surfaces) as it “glides” stably toward the origin of the phase plane. Real systems, however, take
time to switch trajectories, resulting in periods of infinite frequency, or no control, as the system switches from one
trajectory to another while attempting to remain on the switching line. This high frequency chattering undesirably
excites high frequency dynamics.

Systems which are capable of recognizing the familiar features and patterns of a situation and which use past
experiences in behaving in an optimal fashion are called Learning Systems. A learning system, when presented with
a novel situation, learns how to behave by an adaptive approach. Then if the system experiences the same situation,
it will recognize and behave optimally without going through the same adaptive approach. An advantage is that
the system need not be identified in every environmental situation, making the response time faster under situations
that have already been learned. A drawback is that such systems often require repetitive trial and error to bring
them into an operating state [1,25]. A large list of references on methods of control mentioned above can be found
in [13] and {17].

Another method, Time Delay Control (TDC) proposed in references [30,31,32,33], depends neither on estimation
of specific parameters, repetitive actions, infinite switching frequencies, or discontinuous control. It employs. rather,
direct estimation of the effect of the plant dynarmics through the use of time delay. The controller uses the gathered
information to cancel the unknown dynamics and disturbances simultaneously and then inserts the desired dynamics
into the plant. The TDC employs past observation of the system response and control inputs to directly modify
the control actions rather than adjust the controller gains. It updates its .l servation of the system eve'y sampling
period, therefore, estimation of the plant dynamics is dependent upon the saipling frequency. The TDC has a similar
feature as the learning control algorithm proposed in reference [10). This learning control algorithm is applicable
for nonlinear systems with linear input action. [t updates the control action in each learning trial by comparing
the state derivative of the actual trajectory with that of the desired reference trajectory in the previous trial. Time
Delay Control differs from this approach in that the control action is updated at each instant based on recent past.
This paper uses the concepts developed in references (30,31,32,33] to explore the potentials and limitations of the
TDC approach.

The TDC control algorithm leads to systems that have a similar form to that of time delay systems. These systems,
which are also referred to as time-lag or retarded systems , are systems in which time delay exists between the cause
and effect. In time delay systems, these delays arise as a result of delays existing in the hardware components or
computation [5]. In our case, the time delay is a feature of the control algorithm. The mathematical formulation for
such time delay systems leads to delayed differential equations. A special class of these equations are referred to as
integral-differential equations which were studied by Volterra [29]. Volterra was the first to study such systems and
developed the theory to investigate the consequences of time delay. Several other researchers have contributed to the
development of the general theory of the Volterra type. Reference [15] provides several references of contributors to
delayed differential equations including historical perspective of control theory and developments of time delay.

The Time Delay Control was originally formulated in [30] for a class of nonlinear systems with linear input action.
The control algorithm has been applied to robot manipulators and servo systems with very satisfactory results even
under large system parameter variations and disturbances [30,31,32,33,35]. Stability and convergence analysis was
also performed for linear SISO systems [34].

This paper formulates a control law for a class of dynamic systems with nonlinear inj-ut action and then presents
a sufficient condition for control system stability. The derivation is based on the bounded input-bounded ocutput
stability approach using Loo function norms. The control scheme is implemented on a five degrees-of-freedoin high
speed and high precision magnetic bearing. The control performance is evaluated using step responses, frequency
responses and disturbance rejection properties. The experimental data show an excellent control performance despite

the system complexity.
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2 Time Delay Control

In this paper we are concerned with a class of systems described by the following differential equations,

x(t) = F(x,t) + G(x,u,t) + D(¢) (1

where x(t) € R™ and u(t) € R" are the system state vector and control input vector respectively. F(x.t), G(x.u,t)
and D(t) are vector functions with appropriate dimensions and represent respectively known dynamics, unknown
dynamics and disturbances. The variable ¢ represents time. In order to transform the sy:tem into a familiar form,
Equ.(1) can be written as

x(t) = F(x,t) + H(x,u,t) + Bu(t) (2)

where the new term H(x,u,t) is defined as
H(x,u,t) = G(x,u,t) + D(t) — Bu(t) (3)

and B is a matrix to be selected by the designer. A reference model that generates the desired trajectory is chosen
as a linear time invariant system,

)krv\(t) = Amxm(t) + er(t) (4)
where x,,(t) € R" is a reference model state vector, x(f) € R’ is a reference input. A, and B,, are constant
matrices with appropriate dimensions.

The class of systems considered in this paper includes systems that satisfy a matching condition. It was shown
in references [30,32,33] that systems in a special canonical form satisfy the matching condition. These systems can
be partitioned as follows

Xq X,
x=|...1: Fixt)=
Xr F.(x,t) )
0 0 ]
H(x,u,!) = ;o B=1] ...
H.(x,u,l) B,
where the partial states are x, € R* ™", x, € R", %, = [Xr41,Xr42 .. .yXn]! € R"7". The vector functions liave the

following dimensions F,(x,t), H.(x,u,t) € R",B € R"*" and B, € R™*" is of rank » The matrices involved in
the reference model of Equ. (4) are also partitioned in the same manner,

0| I 0
A, = ... , Byn = ...
A, B,
where I, € Rin=rix(n=r)y A e R™*" Bpn, €ER™", B, € R"*" and r(t) € R". Furthermore assume a feedback

matrix K of the form,
0

K = .
K,
where K € R"%" and K, € R™*". The objective is to generate a control action u that forces the error to vanish
according to
e=(A,+Kle=A,e (5)
The control action that combines past observations with adaptation for systems described by Equ. (2) is given by
u(t) = BH[-x(¢t - L)+ F(x,t — L) = F(x,¢t)

(6)
+Anx(t) + Bur(t) + Bu(t — L) - Ke(t)]
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where the parameter L represents the time delay [30,32,33], the error vector e is defined as the difference bhetween
the plant and the reference model state vectors,

e=Xmn—X (7)

The term B* is the pseudo-inverse matrix defined as B+ = (BTB)~ tBT . For the special canonical fornmi considered,
B* is given by
0 o]
B+ =(B7B)"'BT = [0:B]
B, B,

=(BTB,)"'(0:BY)=B;'(0:L]=[0 B/
The control action now reduces to

u(t) = B'[-x.(t-L)+F.(xt- L) — Fo(x,t) + A -x(t)
8
+B,u(t — L)+ Bprr(t) — K.e(t)] ®
Note that this control law is a special case of a general algorithm which uses convolutions for estimating unknown
system dynamics [36}.

The objective of this research is to be able to control such systems and guarantee performance despite the presence
of large dynamic variations in G(x,u,t) and large unexpected disturbances in D(t).

As described in [31], each term in Equ.(8) has the following meaning: (1) B!, cancels the control matrix By, (2)
the term —F(x,t) — x(t — L)+ F(x,t - L) + Bu(t — L) attempts to cancel the undesired known nonlinear dynamics
F(x,t). the unknown nonlinear dynamics and the unexpected disturbances H(x,t), (3) the term Amx + B,.r inserts
the desired dynamics of the reference model, and (4) the error feedback term —Ke adjusts the error dynamics. Thus
this controller observes the current state, the state derivatives (estimates) and the inputs of the system at time t — L,
one step into the past, and determines the best control action that should be commanded at time t. The scheme
used in the time delay control is reminiscent of numerical methods used to -olve differenial equations.

3 Stability Analysis

3.1 Error dynamics

As indicated in [32,33], the stability of such control systems using time delay depends on the delay parameter L, the
control gains K, the speed of the response of the plant and the speed of response of the reference trajectory. The
method used to perform this analysis is based on the bounded input bounded output stability procedure. In what
follows, we discuss the stability analysis for two situations pertaining to whether the control distribution matrix %%L
is constant and known or unknown. In order to perform the stability analysis, we formulate the governing equations

(or the error dynamics. First using the control action of Equ.(8), the plant equations of !3qu.(1) become

-

X,

x(t)

Fo(x.t) + Ho(x, 0 1) + [—i(t = D) + Fo(x,t = L) = Fr(x.0)
+B,u(t = L)+ Amrx(t) + B,. r(t) — K.e(t)]

X

L

\_ H,(x,u,t) — He(x,u,t — LY+ Apex(t) + B,..r(t) — K-e(t)
The previously defined error e of Equ.(7) is now governed by
o(t) = (Am + Kle(t) + H(x,u,t — L) — H(x,u,t) (9)

where the second and third terms are forcing functions due to the unknown system Jdynamics and unpredictable

disturbances.
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Rewriting Equ. (9) as

e(t) = (Am + K)e(t) + p(t) (10)
where
0
pity=| —— -
pr(t)
and

pr(_t) = H.(x,u,t - L) - Hr(xruvt)

One may ask the question: what conditions does the vector p(¢) have to satisfy for the system to be stable? A
sufficient condition for stability will be derived in the next section.

3.2 Sufficient conditions for stability

This section presents a general solution to this multi-input multi-outp 1t control problem We will use the bounded
input-bounded output approach based on Lo, norms in order to deri:e sufficient conditions for stability. We now
consider the governing differential of the error as given by Equ.(10) an | its correponding time response,

t
e(t) = C(A...+K):e(0) +/ [ AR~+K) =T)p(r)dr
0

We will use ||(.)z|] to indicate the norm of the time trancated function (.) and ||(.)|l; for the induced 1)atrix norm.
Taking the norm of the error [28], -

lell < 11 («Am+K) 1l lle(Ol] + supieory Jo I1-A~ K=" llip(r)ldr

t | -7
<1 (et A K) i lle(0)l] + llprllsupieom o I A K= ldr

The desired error dynamics given by (A, + K) are always chosen 1o be asymptotically stable. This implies that
there exist finite positive constants m, A such that

letAn K- < me=2=T) et > r
which implies

¢ - m - m
SuptE[O,T] f(] ”e(Am'fK)(‘ T)“'.d.r S SuPte[O,T] T(l —e »\l) — o

(At EMN = supyegory ll(ef A+ K,
< supgeoryme M =m
Therefore, the norm of the error is bounded
ller]l < a+ Bliprll (11)

where

m
a=m||e(0)], B= T

Tu order to be more specific on these stability conditions, we need to expand the forcins term p(t). We can rewrite
pr{t) as
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pe() = Ho(x(t - L)u(t = L)t — L) = He(x(0), u(t = L).1)
+H,(x(1), u(t = L),1) = He(x(t),u(t).t)
@zl = p-Olrll < NH(x(t = L), u(t = L).t = L) 12)
“H,(x(t), u(t = L), )]
HHL (x(8), u(t — L),8) = Ho(x(8), u(0), ) 7]

Assuming that the function H,(x,u,t) is continuous and differentiable, the Mean Value Theorem yields [6]

[H, (x(t — L), u(t = L),t = L) = Ho(x(t),u(t = L), O)rll

< 1] (2he 4 Zhes) x()ome = 0.0] 1L =
HIHL (x(t), it = L),0) = He(x(0),u(0), Ol
(14)

< I [ 2B x(0),8,0) (u() — i = L)) I

where ¢ € (t = [,t) and é € (u(t - L),u(t)).
Equations (13) and (14) involve terms in x and u. To express them in terms of e, the following expressions are
used,

oH, oM. _0H, OH. = OH, (15
ot Ix = ot ax ™ Ox ¢ )
u(t) —u(t — L) = B [-x(t = L) + Fr(x,t - 1) — F(x,1)
+Apnex(t) + Borr(t) — K, e(t)]
(16)

=B {~Xn(t - L)+ & (t - L)+ F,(x,t - L)~ F.(x,t)
+*mr(t) - (Amr + Kr)e(t)]
since e, = Xmr — Xy and Xmp(t) = A e Xm(t) + Borr(t). Substitution of (13}, {14), (13) and (16) in ( 2) and some
algebraic manipulation yields,

iprll < 128e 4 2Hese o 4 28 Le i L flerl]

1B (A, + Kolliller]

+| 2B i 11 (Remr (8) = Fmr (8 = L]

H (17)
+|1 2587 i ler |l
1 ep | IF (x,t — L) = Fo(x, )l
[Fo(x.t — L) = Fo(x,Drll - < “ (2= + 2= x) (x(€).6)] ||
(13)
< ||2E= + 2Bk || + || 5% || L erl

where &€ € (t — L,t). Substituting Equ. (18) in Equ. (17) yields
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lerll £ o +ezllerll +esllérdl (19)

where the constants c;, ¢y and c3 can be identified as

oH, _ _ oF, OF, . . .
o = I [ LG+ Gl + o () = et = L)
B sl
ax "
€2 = ” _B—l(Amr'f'Kr)“l
(')H dH,
S el S 2 e L

We will assume later that the terms in the right hand side of the three equations listed above are bounded and hence
the parameters ¢y, c2 and c3 will be bounded. The norm of the error in Equ.(11) can now be evaluated and is found
to be,

llerll < a+Bllprll < a+ der + Besller || + Bealler ||

Oor
. ey || |
atBetdelerll op. e

el < THEREE

The above equation relates the norms of the error and the error derivative. To obtain absolute bounds on the error
another equation of this form is needed. The norm of the derivative of the error &, can be found froin Equs. (10)
and (19),

A

llerl < llAm + Kllijler|l + llp7ll

IN

[Am + K]l + co]ller|l + c1 + s llér]] (21)
This condition can be stated as,

a, [An + KL + e

(1-c3) (1= ca) ller|| if ez <1 (22)

llerl <
and substituting Equ.(20) one obtains
[lAm + K]l + c2] (o + Ber + Beall erl])

. +(1 = Bez)ey
ller|l < (1= c3)(1 = Bez)

or

[|Am + Kfli(a + Ber) + 61 + 2
(1 = Bea — c3 — PBea [|Am + K]

if ey 4+ B(ca + e3)|Am + K]||i ) < 1 is satisfied. Using the expressions for the constants ¢, .c; and c3, we have

llerll <
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(W2BEel L+ 12l + 1B e )
1+ 21|An +KIi] -

+ 1B (A + KoL B < 1

Based on the foregoing analysis and relations between the vector functions H,, G,, and B, given by

oH, _9G,  OH, 3G, o
dx  Ox du  du "

the following sufficient condition follows,

Theorem 1 :
If the functions F(x.t), G(x,u,t),D(t) are continuous and differentiable, and

If the Jacobian matrices %FT(L, %(—;ff-, %‘-, and the veclor functions 8—67&, %(%f-, 9?,1)71 € L, and

If the eigenvalues of the matriz (Am + K) are in the lefi-half plane, and
If the following stability condition is salisfied

0+ 2 |Am + Kl ] {12551
£ 1ESeBrt - Tl (1 + 1151 L)) (24)

+ IESeB! ~ D(Am + K § < 1

Then the time delay controller is stable, and
the resultant bounds on the norms of the error, e, and ils derivative € ure

[44 +[3€1 — QC3

”e” S [l — ﬁc-l - C3 — ﬂ(‘a ”Am + KH' ]

(25)

Am + K|l (@ + Be1 ) + 1 + 02
[1= Bea — 3 — BeallAm + Kl

llell <

The constants ¢y, ¢a , ¢c3 « and 3 are,

co o NS - D (NG + Gl + kme(1) = et D]
A

e = 1B DA+ Kol

o = 1S L 12EeB - (14 I D

o = mleOl

i =%
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Figure 1: Region of Stability in the |ler|| — |ler|| space

Condition (ii) implies that the rate of change of the functions F,, G, and D, with respect ¢, x and u are bounded.
Condition (iii) implies that the desired error dynamics are chosen to be stable. Condition (iv) relates the time delay
I, the rates of change of F, and G, with respect to x and u, and the desired error dynamics specified by (A, + K).

The bounds on the norms of the error, e and its derivative € are shown graphically in Figure 1. Equ. (20) yields
a straight line as the boundary between stable and unstable regions. Similarly, Equ. (22) yields another stra-ight
line. The common region bounded by the two straight lines is the region of <tability as shown. The absolute bounds
llellmaz and {|€]lmar shown in Figure 1 correspond to those given by Equ. 125).

3.3 Special cases and discussions

Condition (iv) stated in the proposition 1 can be rewritten in a more convenient and usable form. This simplified
and convenient condition, however, is more conservative. Starting with condition (24) and after somne algebraic
manipulations we obtain,

oG { 1= 09GeL 1+ 3 A0 + KN }
| =%=B; Il < aF
(L+ %5l L)
+ Zi‘. [”Amr + Kr”c’
1A + K+ (15l )]

(26)

The condition (26) implies a bound on the variation of %(‘—;lf- relative to the controller gain matrix B,. The size
of this bound is dependent on the delay time L, the norms of ”%C)%,_”' and “%F—;(L”,', and the desired characteristics

of error dynamics given by (A,, + K). The smaller the delay time is and the smaller the bounds on ||%”i and
H%—| ; are, then the larger the allowable size of bound is on the range of 93%—5 relative to B,.
In the case of first order SISO systemns the vector functions reduce to scalar functions G, = g, B, = band F, = f.

Some interesting results are stated below for this class of systems. For first order SISO systems, we have

||C(A'"+K)“—”||i = | edmtR)E=T) | = lam+h)(i=T)

m=1

A= —(am+k)
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HAme + Kelli = l[Am + Klli = | am +k|= —(am + k)

i A
0G, ., 0w . ( Oz -
188t = 19 - < 57— (1)

(3+2||%{-HL)

99 g 99 )

(1-ugae) () .. (1-2n32ie _)
. b Ty ?

(;L e (3 saglic)

being always positive. For the case where a—i = b the stability condition (28)

the stability condition (26) becomes

The above condition implies

1 —

6

with the lower bound on

becomes,

7]
12 < 3 (29)

This implies that as ||§£~|| becomes large, the delay time L must be decreased to maintain stability which makes
intuitive sense. From (28), it can be observed that for “sufficiently” small L (L — 0), the condition is reduced to
the following limiting case,

9

du 1

& -1l < 3

b 89 3 (30)
2 _ Bu 4

3<% <3

The result indicates that stability is maintained for a variation ol 66% of 4 with respect to b.

du

When the control distribution matrix %%‘ is a constant and known, the controller gain matrix B, may be chosen

such that %%’- = B,. This enables exact cancellation of the known dynamics F, and approximate cancellation of

unknown dynamics and disturbances (33). The stability condition (26) then reduces to a bound on delay time L in
terms of 87()';6‘ and (A, + K). The known dynamics F,, the control distribution matrix %G‘-l-'- and the controller gain

matrix B, do not enter the stability condition because of exact cancellation.

4 Application: Control of a high speed and high precision magnetic
bearing system

The magnetic system under consideration is a turbo molecular pump, a device used to create vaccum in special
environments such as integrated circuit manufacturing. A schematic diagram of this pump is shown in Figure 2.
The pump action is produced once the rotor, with blades attached to it, is spun by an induction motor. In order to
minimize impurities and particle generation, the rotor is suspended magnetically in the X,Y and Z directions shown
in the figure. Some information relevant to this design are summarized in Table 1. This system has five degrees
which may be described by a differential equation of the form,

d | X

—_ R U S P T SRR 31
= + + (31)

X F,(x.t) Go(x,u,t) D, (t)
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Figure 2: A five-axis magnetic b -aring

Rotor Mass = 22 Kg
Air gap for thrust bearing = 400 pm
Air gap for radial bearing = 250 pm
Maximum current to bearings = 10 Amp.

Maximum rotational speed

45,000 RPM

DN

blades

radlal
bearings

ground

g

g |
e thrust
2SS

2,70 bearing
AT

NS
AR
PR
NN
NN
AN
RN
NN
RN

N
NavaN
N

R

SRR
N RN
N

Table 1: Relevant system paraineters

where x, € R® and x, € R tepresent displacements and velocities of the rotor with respect to the bearing stators
tespectively. The current inputs to the electromagnets are represented by the vector u € R3. The control objective
is to levitate the rotor and maintain stability. Also, the control system must reject disturbances under spinning and
nonspinning conditions of the rotor.

This plant is multi-input, multi-output with all five degrees of freedom unstable open loop. Disturbances and
coupling include forces due to gravity, magnetic actions, unbalance and gyroscopic effects. All of these effects will
show up in the vector function G,. Note that since the magnetic force is proportional to the current squared and
inverseley proportional to the gap distance squared the function G,(x,u) is a nonlinear function dependent on the
state x and the control action u.

The variation of the component of G, in the Z direction in terms of the gap z and control current u are shown
in Figures 3, 4, and 5. Figure 3 shows that for a gap of 0.15 mm, the rotor acceleration corresponds to 30 m/sec?
and 110 m/sec? for control currents of 1 and 2 amps respectively. Also, for the same gap opening and with currents
levels of | and 2 amps, gﬁ- changes from about 0.22 x10° ;‘c—; to about (.88 x 106;;-‘5,, and gﬂ- changes from about 32
m/amp-sec? to about 112 m/amp-sec?. It is clear that this particular device experiences drastic dynamic changes.
Therefore, such dynamic information would be necessary if a conventional control system is used: otherwise the
system performance may be acceptable only for some specific operating conditions.

The control algorithm was implemented on a DSP chip as shown in Figure 6. In this experimental setup, we have
the option of controlling the system using either a linear analog controller which resides in the compensation block,
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or a time delay controller implemented digitally in the DSP board. The position signal for the Time Delay controller
is obtained through the test points TP2 and/or TP3 and this signal is then sent into an analog to digital converter
(A/D converter) which is linked to the DSP board. The A/D board has an adjustable built in low pass filter where
the position signal can be filtered. The control voltage signal is sent out through the D/A converter which has a low
pass filter with adjustable cutoff frequency.

The program was written in C and assembly language. The sampling frequency used was around 5 KHz. The
computation time for the control algorithm was about 70usec. The cutoff frequency of the filter for the position
signal was kept at 7.2 KHz since the signal from the sensor is already bandlimited to 1 KHz. The position signals
are then obtained by the DSP board and the control actions representing currents are sent out through the D/A
converter. The D/A converter has a low pass flter with a cutoff frequency set to 1.5 KHz. Although a sampling rate
of 5 KHz was adequate for this system, the sampling frequency could be increased up to 15 KHz. This sampling rate
could further be increased by optimizing the program code and hence reducing the comj utation time for the Time
Delay Control law.

In this section, we will use the control procedure described earlier to maintain a desire:l performance. The model
reference for the thrust bearing position was chosen as a second order system with a natur il frequency of 200 rad/sec
and a damping ratio of .707. The experimental data shown in Figure 7 indicate that tle actual position response
tracks the reference model response very closely. In this case, the position of the rotor 11oves from 200um to Oum
which corresponds to the suspended configuration. The error between the desired and actual position trajectories is
shown in the same figure and has about less than 10% maximum error. The control current necessary to produce
this response is also shown in that same figure with a maximum current of about 1.75 amps. This is an excellent
performance considering that the controller has no detailed information about the system. Figure 8 slows the
closed-loop frequency response between the reference position and actual position of the thrust bearing. In his case
it is clear that the magnitude and phase characteristics are close to those of the reference model selected. [n order
to check the disturbance rejection properties of the control system, an additional current is injected through the
drive amplifiers (Auxiliary input 2 in Figure 6) to create an intentional disturbance force. The frequency of this
input is then varied from 0.1 Hz to 10 KHz (sine sweep). In order to check the disturbance rejection properties, we
measured the frequency response from the additional current to the position of the rotor. The disturbance rejection
properties of the thrust bearing are shown in Figure 9. This curve repres-nts a compliance curve. The controller
rejects disturbances up to the bandwidth which is again around 200 rad/scc. ‘The static stiflness is about 100 MN/m
and the minimum stiffness is about 300 KN/m at the frequency of 200 rad/sec.

Figure 10 shows the closed loop frequency response for a radial bearing. Again, this response is between the
reference position and actual rotor position. This is very similar to that of the reference model. Figure 11 shows the
disturbance rejection of the radial bearing when the rotor is at rest and while it is spinning at 10900 RPM, 20100
RPM, 30400 RPM and 34800 RPM. When the rotor is not spinning, the static stiffness is about 200 MN/m and
the minimum stiffness is about 500 KN/m. It is clear that the disturbance rejection properties are almost the same
for these different operating conditions. Figure 12 shows the effect of using a lower bandwidth of 100 rad/sec. In
this case, the disturbance rejection curve moves up indicating a lower stiffness. These data demonstrate that such a
control scheme possesses excellent robustness properties.

5 Conclusion

The time delay controller algorithm uses past observations for adaption in controlling systems with unknown dynamics
and unpredictable distur!-ances. The time delay control law is formulated for a class of nonlinear systems with
nonlinear input action. 'Che result of stability analysis performed based on the bounded input-bounded output
stability approach are presented and interpreted. The control scheme is implemented on a five-degree-of-freedom
magnetic bearing. The control performance, evaluated using step responses and disturbance rejection properties, is
shown to be excellent despite the complex nonlinearities in the system.
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